Extract Entity#

class sycamore.transforms.extract_entity.ExtractEntity(child: Node, entity_extractor: EntityExtractor, **resource_args)[source]#

Bases: Transform

ExtractEntity is a transformation class for extracting entities from a dataset using an EntityExtractor.

The Extract Entity Transform extracts semantically meaningful information from your documents.These extracted entities are then incorporated as properties into the document structure.

  • child – The source node or component that provides the dataset containing text data.

  • entity_extractor – An instance of an EntityExtractor class that defines the entity extraction method to be

  • applied.

  • resource_args – Additional resource-related arguments that can be passed to the extraction operation.


source_node = ...  # Define a source node or component that provides a dataset with text data.
custom_entity_extractor = MyEntityExtractor(entity_extraction_params)
extraction_transform = ExtractEntity(child=source_node, entity_extractor=custom_entity_extractor)
extracted_entities_dataset = extraction_transform.execute()
class sycamore.transforms.extract_entity.OpenAIEntityExtractor(entity_name: str, llm: ~sycamore.llms.llms.LLM, prompt_template: str | None = None, num_of_elements: int = 10, prompt_formatter: ~typing.Callable[[list[~sycamore.data.element.Element]], str] = <function element_list_formatter>)[source]#

Bases: EntityExtractor

OpenAIEntityExtractor uses one of OpenAI’s language model (LLM) for entity extraction.

This class inherits from EntityExtractor and is designed for extracting a specific entity from a document using OpenAI’s language model. It can use either zero-shot prompting or few-shot prompting to extract the entity. The extracted entities from the input document are put into the document properties.

  • entity_name – The name of the entity to be extracted.

  • llm – An instance of an OpenAI language model for text processing.

  • prompt_template – A template for constructing prompts for few-shot prompting. Default is None.

  • num_of_elements – The number of elements to consider for entity extraction. Default is 10.

  • prompt_formatter – A callable function to format prompts based on document elements.


title_context_template = "template"

openai_llm = OpenAI(OpenAIModels.GPT_3_5_TURBO.value)
entity_extractor = OpenAIEntityExtractor("title", llm=openai_llm, prompt_template=title_context_template)

context = sycamore.init()
pdf_docset = context.read.binary(paths, binary_format="pdf")